Statistics And Probability Question 376

Question: The marks obtained by 60 students in a certain test are given below:
Marks No. of students
10-20 2
20-30 3
30-40 4
40-50 5
50-60 6
60-70 12
70-80 14
80-90 10
90-100 4

Mean, median and mode of the above data are respectively

Options:

A) $ 64.33,68.33,76.33 $

B) $ 60,70,80 $

C) $ 66.11,71.11,79.11 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] We construct the following table taking assumed mean a = 55 (step deviation method).

Class $x_{i}$ $f_{i}$ $c.f.$ $u_{i}=\frac{x_{i}-a}{10}f_{i}u_{i}$
10-20 15 2 2 -4-8
20-30 25 3 5 -3-9
30-40 35 4 9 -2-8
40-50 45 5 14 -1-5
50-60 55 6 20 0
60-70 65 12 32 1
70-80 75 14 46 2
80-90 85 10 56 3
90-100 95 4 60 4
Total 60 56

$ \therefore $ The mean $ =a+\frac{\sum{f_{i}u_{i}}}{\sum{f_{i}}}\times c $ $ =55\times \frac{56}{60}\times 10=55+\frac{56}{6}=64.333 $ Here $ n=60\Rightarrow \frac{n}{2}=30, $ therefore, 60-70 is the median class Using the formula: $ M=l+\frac{\frac{n}{2}-C}{f}\times c=60+\frac{30-20}{12}\times 10=68.333 $ Using Empirical formula, we have Mode = 3 Median -2 Mean $ =(68.333)-2(64.333)=204.999-128.666=76.333 $