Statistics And Probability Question 377

Question: The variance of 20 observations is 5. If each observation is multiplied by 2, then what is the new variance of the resulting observations?

Options:

A) 5

B) 10

C) 20

D) 40

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let $ x_1,x_2,…,x_{20} $ be the given observations. Given, $ \frac{1}{20}\sum\limits_{i=1}^{20}{{{(x_{i}-\bar{x})}^{2}}=5} $ To find variance of $ 2x_1,2x_2,2x_3,…2x_{20}, $ Let $ \bar{x} $ denotes the mean of new observation, Clearly, $ \bar{x}=\frac{\sum\limits_{i=1}^{20}{2x_{i}}}{20}=\frac{2\sum\limits_{i=1}^{20}{x_{i}}}{20}=2\bar{x} $ Now, variance of new observation $ =\frac{1}{20}\sum\limits_{i=1}^{20}{{{(2x_{i}-\bar{x})}^{2}}=\frac{1}{20}\sum\limits_{i=1}^{20}{{{(2x_{i}-2\bar{x})}^{2}}}} $ $ =\frac{1}{20}\sum\limits_{i=1}^{20}{4{{(x_{i}-\bar{x})}^{2}}=4( \frac{1}{20}\sum\limits_{i=1}^{20}{{{(x_{i}-\bar{x})}^{2}}} )} $ $ =4\times 5=20 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें