Statistics And Probability Question 466

Question: A biased coin with probability $ p,0<p<1, $ of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is $ \frac{2}{5}, $ then $ p= $

Options:

A) $ \frac{1}{2} $

B) $ \frac{1}{3} $

C) $ \frac{1}{4} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  •         Let  $ X $  denotes the number of tosses required. Then  $ P(X=r)={{(1-p)}^{r-1}}. $   $ p, $  for  $ r=1,\,2,\,3\,...... $             Let  $ E $  denote the event that the number of tosses required is even.            Then  $ P(E)=P[(X=2)\cup (X=4)\cup (X=6)\cup ........] $              $ P(E)=P(X=2)+P(X=4)+P(X=6)+...... $              $ P(E)=(1-p)p+{{(1-p)}^{3}}p+{{(1-p)}^{5}}p+.......=\frac{1-p}{2-p} $                  But we are given that  $ P(E)=\frac{2}{5}, $  then we get  $ p=\frac{1}{3}. $