Statistics And Probability Question 505

Question: A coin is tossed 2n times. The chance that the number of times one gets head is not equal to the number of times one gets tail is

[DCE 2002]

Options:

A) $ \frac{(2n!)}{{{(n!)}^{2}}}{{( \frac{1}{2} )}^{2n}} $

B) $ 1-\frac{(2n!)}{{{(n!)}^{2}}} $

C) $ 1-\frac{(2n!)}{{{(n!)}^{2}}},.,\frac{1}{4^{n}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  •         The required probability                   = 1 ? Probability of equal number of heads and tails                  $ =1-{{\,}^{2n}}C_{n}{{( \frac{1}{2} )}^{n}}{{( \frac{1}{2} )}^{2n-n}}=1-\frac{(2n)\,!}{n\,!\,n\,!}{{( \frac{1}{4} )}^{n}}=1-\frac{(2n)\,!}{{{(n\,!\,)}^{2}}}\cdot \frac{1}{4^{n}} $ .