Statistics And Probability Question 510

Question: Let $ x_1,x_2,x_3,x_4 $ and $ x_5 $ be the observations with mean m and standard deviation s. The standard deviation of the observations $ kx_1, $ $ kx_2, $ $ kx_3, $ $ kx_4, $ and $ kx_5, $ is

Options:

A) $ k+s $

B) s/k

C) ks

D) s

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Here, $ m=\frac{\Sigma x_{i}}{5},,s=\sqrt{\frac{\Sigma x_i^{2}}{5}-{{( \frac{\Sigma x_{i}}{5} )}^{2}}} $ For observations $ kx_1,kx_2,kx_3,kx_4,kx_5, $ $ SD=\sqrt{\frac{k^{2}\Sigma x_i^{2}}{5}-{{( \frac{k\Sigma x_{i}}{5} )}^{2}}} $ $ =\sqrt{\frac{k^{2}\Sigma x_i^{2}}{5}-k^{2}{{( \frac{\Sigma x_{i}}{5} )}^{2}}} $ $ =k\sqrt{\frac{\Sigma x_i^{2}}{5}-{{( \frac{\Sigma x_{i}}{5} )}^{2}}}=ks $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें