Statistics And Probability Question 555

Question: If X has binomial distribution with mean np and variance npq, then $ \frac{P(X=k)}{P(X=k-1)} $ is

[Pb. CET 2004]

Options:

A) $ \frac{n-k}{k-1}.\frac{p}{q} $

B) $ \frac{n-k+1}{k}.\frac{p}{q} $

C) $ \frac{n+1}{k}.\frac{q}{p} $

D) $ \frac{n-1}{k+1}.\frac{q}{p} $

Show Answer

Answer:

Correct Answer: B

Solution:

  •         Here mean = np and variance = npq             
    

$ \therefore $ $ \frac{P(X=k)}{P(X=k-1)}=\frac{^{n}C_{k}{{(p)}^{k}}{{(q)}^{n-k}}}{^{n}{C_{k-1}}{{(p)}^{k-1}}{{(q)}^{n-k+1}}}=\frac{^{n}C_{k}}{^{n}{C_{k-1}}}.\frac{p}{q} $
$ \therefore $ $ \frac{P(X=k)}{P(X=k-1)}=\frac{n-k+1}{k},.,\frac{p}{q} $ .