Statistics And Probability Question 558

Question: If $ A_1,,A_2,…A_{n} $ are any n events, then

Options:

A) $ P,(A_1\cup A_2\cup …\cup A_{n})=P,(A_1)+P(A_2)+…+P,(A_{n}) $

B) $ P,(A_1\cup A_2\cup …\cup A_{n})>P,(A_1)+P(A_2)+…+P,(A_{n}) $

C) $ P,(A_1\cup A_2\cup …\cup A_{n})\le P,(A_1)+P(A_2)+…+P,(A_{n}) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  •                 For any two events  $ A $  and  $ B, $ we have                     $ P(A\cup B)=P(A)+P(B)-P(A\cap B) $                      
    

$ \therefore ,P(A\cup B)\le P(A)+P(B). $ Using principle of mathematical induction, it can be easily established that $ P( \underset{i=1}{\overset{n}{\mathop{\cup }}},A_{i} )\le \sum\limits_{i=1}^{n}{P(A_{i}).} $