Statistics And Probability Question 569

Question: If the mean of the set of numbers $ x_1,,x_2,,x_3,,…..,,x_{n} $ is $ \bar{x} $ , then the mean of the numbers $ x_{i}+2i $ , $ 1\le i\le n $ is

[Pb. CET 1988]

Options:

A) $ \bar{x}+2n $

B) $ \bar{x}+n+1 $

C) $ \bar{x}+2 $

D) $ \bar{x}+n $

Show Answer

Answer:

Correct Answer: B

Solution:

We know that $ \bar{x}=\frac{\sum\limits_{i=1}^{n}{x_{i}}}{n} $ i.e., $ \sum\limits_{i=1}^{n}{x_{i}}=n\bar{x} $ \ $ \frac{\sum\limits_{i=1}^{n}{(x_{i}+2i)}}{n}=\frac{\sum\limits_{i=1}^{n}{x_{i}}+2\sum\limits_{i=1}^{n}{i}}{n}=\frac{n\bar{x}+2(1+2+…n)}{n}=\frac{n\bar{x}+2\frac{n(n+1)}{2}}{n}=\bar{x}+(n+1) $ $ =\frac{n\bar{x}+2\frac{n(n+1)}{2}}{n}=\bar{x}+n+1 $ .