Statistics-And-Probability Question 597
Question: If mean of the n observations $ x_1,x_2,x_3,…x_{n} $ be $ \bar{x}, $ then the mean of n observations $ 2x_1+3,2x_2+3,2x_3+3,…,2x_{n}+3 $ is
Options:
A) $ 3\bar{x}+2 $
B) $ 2\bar{x}+3 $
C) $ \bar{x}+3 $
D) $ 2\bar{x} $
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Required mean $ =\frac{1}{n}\sum\limits_{i=1}^{n}{(2x_{i}+3)} $ $ =\frac{2}{n}( \sum\limits_{i=1}^{n}{x_{i}} )+\frac{3n}{n}=2{ \frac{1}{n}( \sum\limits_{i=1}^{n}{x_{i}} ) }+3 $ $ =2\bar{x}+3 $