Statistics-And-Probability Question 597

Question: If mean of the n observations $ x_1,x_2,x_3,…x_{n} $ be $ \bar{x}, $ then the mean of n observations $ 2x_1+3,2x_2+3,2x_3+3,…,2x_{n}+3 $ is

Options:

A) $ 3\bar{x}+2 $

B) $ 2\bar{x}+3 $

C) $ \bar{x}+3 $

D) $ 2\bar{x} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Required mean $ =\frac{1}{n}\sum\limits_{i=1}^{n}{(2x_{i}+3)} $ $ =\frac{2}{n}( \sum\limits_{i=1}^{n}{x_{i}} )+\frac{3n}{n}=2{ \frac{1}{n}( \sum\limits_{i=1}^{n}{x_{i}} ) }+3 $ $ =2\bar{x}+3 $