Statistics-And-Probability Question 644
Question: Let $ \bar{x} $ be the mean of n observations $ x_1,x_2,…x_{n}, $ if $ (a-b) $ is added to each observation, then what is the mean of new set of observations?
Options:
A) 0
B) $ \bar{x} $
C) $ \bar{x}-(a-b) $
D) $ \bar{x}+(a-b) $
Show Answer
Answer:
Correct Answer: D
Solution:
[d] Let  $ \bar{x} $ is the mean of n observation  $ x_1,x_2,…x_{n}. $
$ \Rightarrow \bar{x}=\frac{x_1+x_2+x_3+…+x_{n}}{n} $  Now (a - b) is added to each term.
$ \therefore  $  New mean  $ =\frac{x_1+(a-b)+x_2+(a-b)+…+x_{n}+(a-b)}{n} $   $ =\frac{x_1+x_2+…+x_{n}}{n}+\frac{n(a-b)}{n} $   $ =\bar{x}+(a-b) $
 BETA
  BETA 
             
             
           
           
           
          