Statistics And Probability Question 73

Question: A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is

Options:

A) $ \frac{15}{2^{8}} $

B) $ \frac{2}{15} $

C) $ \frac{15}{2^{13}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let n be the number of tosses and X the number of times heads occurs. Then $ X\tilde{\ }B(n,p), $ with $ p=1/2 $ . Therefore, since $ P(X=7)=P(X=9), $ we have $ ^{n}C_7{{( \frac{1}{2} )}^{7}}{{( \frac{1}{2} )}^{n-1}}{{=}^{n}}C_9{{( \frac{1}{2} )}^{9}}{{( \frac{1}{2} )}^{n-9}}{{\Rightarrow }^{n}}C_7{{( \frac{1}{2} )}^{n}}{{=}^{n}}c_9{{( \frac{1}{2} )}^{n}} $ That is, $ ^{n}C_7{{=}^{n}}C_9{{=}^{n}}{C_{n-9}}, $ yielding $ 7=n-9 $ or $ n=16. $ Hence $ P(X=2){{=}^{16}}C_2{{( \frac{1}{2} )}^{16}}=( \frac{16\times 15}{2} ){{( \frac{1}{2} )}^{16}}=\frac{15}{2^{13}} $