Statistics And Probability Question 73

Question: A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is

Options:

A) $ \frac{15}{2^{8}} $

B) $ \frac{2}{15} $

C) $ \frac{15}{2^{13}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let n be the number of tosses and X the number of times heads occurs. Then $ X\tilde{\ }B(n,p), $ with $ p=1/2 $ . Therefore, since $ P(X=7)=P(X=9), $ we have $ ^{n}C_7{{( \frac{1}{2} )}^{7}}{{( \frac{1}{2} )}^{n-1}}{{=}^{n}}C_9{{( \frac{1}{2} )}^{9}}{{( \frac{1}{2} )}^{n-9}}{{\Rightarrow }^{n}}C_7{{( \frac{1}{2} )}^{n}}{{=}^{n}}c_9{{( \frac{1}{2} )}^{n}} $ That is, $ ^{n}C_7{{=}^{n}}C_9{{=}^{n}}{C_{n-9}}, $ yielding $ 7=n-9 $ or $ n=16. $ Hence $ P(X=2){{=}^{16}}C_2{{( \frac{1}{2} )}^{16}}=( \frac{16\times 15}{2} ){{( \frac{1}{2} )}^{16}}=\frac{15}{2^{13}} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें