Straight Line Question 100

Question: The product of the perpendiculars drawn from the points $ (\pm \sqrt{a^{2}-b^{2},}0) $ on the line $ \frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1 $ , is

Options:

A) $ a^{2} $

B) $ b^{2} $

C) $ a^{2}+b^{2} $

D) $ a^{2}-b^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ ( \frac{b\sqrt{a^{2}-b^{2}}\cos \theta +0-ab}{\sqrt{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta }} )( \frac{-b\sqrt{a^{2}-b^{2}}\cos \theta -ab}{\sqrt{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta }} ) $ $ =\frac{-[b^{2}(a^{2}-b^{2}){{\cos }^{2}}\theta -a^{2}b^{2}]}{(b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta )} $ $ =\frac{b^{2}[a^{2}-a^{2}{{\cos }^{2}}\theta +b^{2}{{\cos }^{2}}\theta ]}{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta } $ $ =\frac{b^{2}[a^{2}{{\sin }^{2}}\theta +b^{2}{{\cos }^{2}}\theta ]}{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta } $ = $ b^{2} $ .Trick: Let $ a=2,b=1 $ and $ \theta =\frac{\pi }{2} $ , then the points are $ (\pm \sqrt{3},0) $ and the line is y = 1. Length from $ (\sqrt{3},0) $ on $ y=1 $ is 1 and that of from $ (-\sqrt{3},0) $ is also 1. Hence product is $ 1\times 1=1 $ , which is given by (b).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें