Question: The product of the perpendiculars drawn from the points  $ (\pm \sqrt{a^{2}-b^{2},}0) $  on the line $ \frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1 $ , is
Options:
A) $ a^{2} $
B) $ b^{2} $
C) $ a^{2}+b^{2} $
D) $ a^{2}-b^{2} $
  Show Answer
  Answer:
Correct Answer: B
Solution:
- $ ( \frac{b\sqrt{a^{2}-b^{2}}\cos \theta +0-ab}{\sqrt{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta }} )( \frac{-b\sqrt{a^{2}-b^{2}}\cos \theta -ab}{\sqrt{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta }} ) $       $ =\frac{-[b^{2}(a^{2}-b^{2}){{\cos }^{2}}\theta -a^{2}b^{2}]}{(b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta )} $       $ =\frac{b^{2}[a^{2}-a^{2}{{\cos }^{2}}\theta +b^{2}{{\cos }^{2}}\theta ]}{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta } $       $ =\frac{b^{2}[a^{2}{{\sin }^{2}}\theta +b^{2}{{\cos }^{2}}\theta ]}{b^{2}{{\cos }^{2}}\theta +a^{2}{{\sin }^{2}}\theta } $ = $ b^{2} $ .Trick: Let  $ a=2,b=1 $ and $ \theta =\frac{\pi }{2} $ , then the points are  $ (\pm \sqrt{3},0) $   and the line is y = 1. Length from  $ (\sqrt{3},0) $  on  $ y=1 $  is 1 and that of from  $ (-\sqrt{3},0) $  is also 1. Hence product is $ 1\times 1=1 $ , which is given by (b).