Straight Line Question 139

Question: If for a variable line $ \frac{x}{a}+\frac{y}{b}=1 $ , the condition $ \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}} $ (c is a constant) is satisfied, then locus of foot of perpendicular drawn from origin to the line is [RPET 1999]

Options:

A) $ x^{2}+y^{2}=c^{2}/2 $

B) $ x^{2}+y^{2}=2c^{2} $

C) $ x^{2}+y^{2}=c^{2} $

D) $ x^{2}-y^{2}=c^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Equation of perpendicular drawn from origin to the line $ \frac{x}{a}+\frac{y}{b}=1 $ is $ y-0=\frac{a}{b}(x-0) $ $ [ \begin{aligned} & \\ & \because m \\ \end{aligned} . $ of given line $ =\frac{-b}{a} $ ,
    $ \therefore m $ of perpendicular $ . =\frac{a}{b} ] $
    Þ $ by-ax=0 $
    Þ $ \frac{x}{b}-\frac{y}{a}=0 $ Now, the locus of foot of perpendicular is the intersection point of line $ \frac{x}{a}+\frac{y}{b}=1 $ …..(i) and $ \frac{x}{b}-\frac{y}{a}=0 $ ……(ii) To find locus, squaring and adding (i) and (ii) $ {{( \frac{x}{a}+\frac{y}{b} )}^{2}}+{{( \frac{x}{b}-\frac{y}{a} )}^{2}}=1 $
    Þ $ x^{2}( \frac{1}{a^{2}}+\frac{1}{b^{2}} )+y^{2}( \frac{1}{a^{2}}+\frac{1}{b^{2}} )=1 $
    Þ $ x^{2}( \frac{1}{c^{2}} )+y^{2}( \frac{1}{c^{2}} )=1 $ , $ [ \because \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}} ] $
    Þ $ x^{2}+y^{2}=c^{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें