Straight Line Question 143

Question: If each of the points, $ (x_1,4) $ , $ (-2,y_1) $ lies on the line joining the points (2, -1) and (5, -3), then the point $ p(x_1,y_1) $ lies on the line

Options:

A) $ 6(x+y)-25=0 $

B) $ 2x+6y+1=0 $

C) $ 2x+3y-6=0 $

D) $ 6(x+y)+25=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] The equation of the line joining the points (2,-1) and (5,-3) is given by $ y+1=\frac{-1+3}{2-5}(x-2) $ Or $ 2x+3y-1=0 $ Since $ (x_1,4) $ and $ (-2,y_1) $ lie on $ 2x+3y-1=0 $ , we have $ 2x_1+12-1=0 $ or $ x_1=-\frac{11}{2} $ And $ -4+3y_1-1=0 $ or $ y_1=\frac{5}{3} $ Thus, $ (x_1,y_1) $ satisfies $ 2x+6y+1=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें