Straight Line Question 147

Question: The line $ \frac{x}{a}+\frac{y}{b}=1 $ meets the x-axis at A, the y-axis at B, and the line y=x at C such that the area of $ \Delta AOC $ is twice the area of $ \Delta BOC $ . Then the coordinates of C are

Options:

A) $ ( \frac{b}{3},\frac{b}{3} ) $

B) $ ( \frac{2a}{3},\frac{2a}{3} ) $

C) $ ( \frac{2b}{3},\frac{2b}{3} ) $

D) none of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given $ ar\Delta AOC=2(ar\Delta BOC) $ Or $ \frac{1}{2}(OA)(x_1)=\frac{2\times 1}{2}(OB)(x_1) $ Or $ a=2b $ The equation of AB is $ \frac{x}{a}+\frac{y}{b}=1 $ …(i) Or $ \frac{x}{2b}+\frac{y}{b}=1 $ …(ii) Since point C lies on line (ii), we have $ \frac{x_1}{2b}+\frac{y_1}{b}=1 $ Or $ x_1=\frac{2b}{3}=\frac{a}{3} $ Or $ C\equiv ( \frac{2b}{3},\frac{2b}{3} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें