Straight Line Question 153

Question: Line $ ax+by+p=0 $ makes angle $ \pi /4 $ with $ xcos\alpha +ysin\alpha =p,p\in {R^{+}} $ . if these lines and the line $ xsin\alpha -ycos\alpha =0 $ are concurrent, then

Options:

A) $ a^{2}+b^{2}=1 $

B) $ a^{2}+b^{2}=2 $

C) $ 2(a^{2}+b^{2})=1 $

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Lines $ x\cos a+y\sin a=p $ and $ x\sin \alpha -y\cos \alpha =0 $ are mutually perpendicular, thus , $ ax+by+p=0 $ will be equally inclined to these lines and would be the angle bisector of these lines. Now, the equations of angle bisectors are $ x\sin \alpha -y\cos \alpha =\pm (xcos\alpha +ysin\alpha -p) $ Or $ x(cos\alpha -sin\alpha )+y(sin\alpha +cos\alpha )=p $ Or $ x(sin\alpha +cos\alpha )-y(cos\alpha -sin\alpha )=p $ Comparing th4ese lines with $ ax+by+p=0 $ , we get $ \frac{a}{\cos \alpha -\sin \alpha }=\frac{b}{\sin \alpha +\cos \alpha }=1 $ Or $ a^{2}+b^{2}=2 $ Or $ \frac{a}{\sin \alpha +\cos \alpha }=\frac{b}{\cos \alpha -\sin \alpha }=1 $ Or $ a^{2}+b^{2}=2 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें