Question: Line  $ ax+by+p=0 $ makes angle  $ \pi /4 $  with  $ xcos\alpha +ysin\alpha =p,p\in {R^{+}} $ . if these lines and the line  $ xsin\alpha -ycos\alpha =0 $  are concurrent, then
Options:
A)  $ a^{2}+b^{2}=1 $
B)  $ a^{2}+b^{2}=2 $
C)  $ 2(a^{2}+b^{2})=1 $
D) none of these
  Show Answer
  Answer:
Correct Answer: B
Solution:
- [b] Lines  $ x\cos a+y\sin a=p $ and  $ x\sin \alpha -y\cos \alpha =0 $  are mutually perpendicular, thus ,  $ ax+by+p=0 $  will be equally inclined to these lines and would be the angle bisector of these lines. Now, the equations of angle bisectors are  $ x\sin \alpha -y\cos \alpha =\pm (xcos\alpha +ysin\alpha -p) $  Or  $ x(cos\alpha -sin\alpha )+y(sin\alpha +cos\alpha )=p $  Or  $ x(sin\alpha +cos\alpha )-y(cos\alpha -sin\alpha )=p $  Comparing th4ese lines with  $ ax+by+p=0 $ , we get  $ \frac{a}{\cos \alpha -\sin \alpha }=\frac{b}{\sin \alpha +\cos \alpha }=1 $  Or  $ a^{2}+b^{2}=2 $  Or  $ \frac{a}{\sin \alpha +\cos \alpha }=\frac{b}{\cos \alpha -\sin \alpha }=1 $  Or  $ a^{2}+b^{2}=2 $