Straight Line Question 156

Question: The equation of the straight line passing through the point (4, 3) and making intercepts on the coordinate axes, whose sum is-1, is

Options:

A) $ \frac{x}{2}+\frac{y}{3}=-1 $ and $ \frac{x}{-2}+\frac{y}{1}=-1 $

B) $ \frac{x}{2}-\frac{y}{3}=-1 $ and $ \frac{x}{-2}+\frac{y}{1}=-1 $

C) $ \frac{x}{2}+\frac{y}{3}=1 $ and $ \frac{x}{2}+\frac{y}{3}=1 $

D) $ \frac{x}{2}-\frac{y}{3}=1 $ and $ \frac{x}{-2}+\frac{y}{1}=1 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let a and b the intercepts on the coordinate axes. Given a+b=-1
    $ \Rightarrow b=-a-1=-(a+1) $ The equation of the line is $ x/a+y/b=1 $

$ \Rightarrow \frac{x}{a}-\frac{y}{a+1}=1 $ …(i) Since this line passes through (4, 3), $ \frac{4}{a}-\frac{3}{a+1}=1 $

$ \Rightarrow \frac{4a+4-3a}{a(a+1)}=1 $

$ \Rightarrow a+4=a^{2}+a $

$ \Rightarrow a^{2}=4\Rightarrow a=\pm 2 $ Therefore, the equation of the line [from (i)] is $ \frac{x}{2}-\frac{y}{3}=1 $ and $ \frac{x}{-2}+\frac{y}{1}=1 $