Straight Line Question 156

Question: The equation of the straight line passing through the point (4, 3) and making intercepts on the coordinate axes, whose sum is-1, is

Options:

A) $ \frac{x}{2}+\frac{y}{3}=-1 $ and $ \frac{x}{-2}+\frac{y}{1}=-1 $

B) $ \frac{x}{2}-\frac{y}{3}=-1 $ and $ \frac{x}{-2}+\frac{y}{1}=-1 $

C) $ \frac{x}{2}+\frac{y}{3}=1 $ and $ \frac{x}{2}+\frac{y}{3}=1 $

D) $ \frac{x}{2}-\frac{y}{3}=1 $ and $ \frac{x}{-2}+\frac{y}{1}=1 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let a and b the intercepts on the coordinate axes. Given a+b=-1
    $ \Rightarrow b=-a-1=-(a+1) $ The equation of the line is $ x/a+y/b=1 $

$ \Rightarrow \frac{x}{a}-\frac{y}{a+1}=1 $ …(i) Since this line passes through (4, 3), $ \frac{4}{a}-\frac{3}{a+1}=1 $

$ \Rightarrow \frac{4a+4-3a}{a(a+1)}=1 $

$ \Rightarrow a+4=a^{2}+a $

$ \Rightarrow a^{2}=4\Rightarrow a=\pm 2 $ Therefore, the equation of the line [from (i)] is $ \frac{x}{2}-\frac{y}{3}=1 $ and $ \frac{x}{-2}+\frac{y}{1}=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें