Straight Line Question 206

Question: If the angle between the two lines represented by $ 2x^{2}+5xy+3y^{2}+6x+7y+4=0 $ is $ {{\tan }^{-1}}m. $ then m is equal to:

Options:

A) $ \frac{1}{5} $

B) 1

C) $ \frac{7}{5} $

D) 7

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We have, $ 2x^{2}+5xy+3y^{2}+6x+7y+4=0 $ comparing this eq. with $ ax^{2}+by^{2}+2hxy+2gx+2fy+c=0. $ we get $ a=2,b=3,h=\frac{5}{2} $

$ \therefore \tan \theta =\frac{2\sqrt{h^{2}-ab}}{a+b}=\frac{2\sqrt{\frac{25}{4}-2\times 3}}{2+3} $ $ =\frac{2\sqrt{\frac{1}{4}}}{5}=\frac{2\times \frac{1}{2}}{5}=\frac{1}{5}\tan \theta =\frac{1}{5}\Rightarrow m=\frac{1}{5} $