Straight Line Question 211

Question: If the slope of one of the lines represented by $ ax^{2}+2hxy+by^{2}=0 $ is the square of the other, Then $ \frac{a+b}{h}+\frac{8h^{2}}{ab}= $

Options:

A) 4

B) 6

C) 8

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let m and $ m^{2} $ be the slopes of the lines represented by $ ax^{2}+2hxy+by^{2}=0. $ Then, $ m+m^{2}=-\frac{2h}{b} $ and $ mm^{2}=\frac{a}{b} $ or $ m^{3}=\frac{a}{b} $

$ \therefore {{(m+m^{2})}^{3}}={{( -\frac{2h^{2}}{b} )}^{2}} $

$ \therefore m^{3}+m^{6}+3mm^{2}(m+m^{2})=-\frac{8h^{3}}{b^{3}} $

$ \therefore \frac{a}{b^{2}}(a+b)+\frac{8h^{3}}{b^{3}}=\frac{6ah}{b^{2}}\therefore \frac{a+b}{h}+\frac{8h^{2}}{ab}=6 $ These are the set of parallel lines and the distance between parallel lines are equal.