Straight Line Question 219

Question: What is the acute angle between the lines represented by the equations $ y-\sqrt{3}x-5=0 $ and $ \sqrt{3}x-x+6=0? $

Options:

A) $ 30{}^\circ $

B) $ 45{}^\circ $

C) $ 60{}^\circ $

D) $ 75{}^\circ $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ y-\sqrt{3}x-5=0 $ line one $ \sqrt{3}y-x+6=0 $ Line two $ y=mx+c $ $ y=\sqrt{3}x+5 $$ y=\frac{x}{\sqrt{3}}-\frac{6}{\sqrt{3}} $ $ m_1=\sqrt{3} $ $ m_2=\frac{1}{\sqrt{3}} $ Angle between two lines, $ \tan \theta =| \frac{m_1-m_2}{1+m_1m_2} | $ $ =| \frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3}\frac{1}{\sqrt{3}}} |=\frac{1}{\sqrt{3}} $ $ =\tan 30{}^\circ $

$ \therefore \theta =30{}^\circ $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें