Straight Line Question 220

Question: A regular polygon with equal sides has 9 diagonals. Two of the vertices are at $ A(-1,0) $ and $ B(1,0) $ . Possible areas of polygon is

Options:

A) $ \frac{3\sqrt{3}}{2},2\sqrt{3},6\sqrt{3} $

B) $ 2\sqrt{3},3\sqrt{3},6\sqrt{3} $

C) $ 9\sqrt{3},6\sqrt{3},2\sqrt{3} $

D) $ \frac{3\sqrt{3}}{2},3\sqrt{3},6\sqrt{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] If polygon has n sides, then the number of diagonals $ =\frac{n(n-3)}{2}=9 $

$ \therefore n=6 $ Now A and B can be adjacent vertices atternate vertices or opposite vertices If A and B are adjacent then side $ AB=2, $ then $ area=6\times \Delta OAB $ i.e. area $ =6\times \frac{\sqrt{3}}{4}\times {{(2)}^{2}}=6\sqrt{3} $ If A and B are alternate, then $ 2\cos 30{}^\circ =a+a\cos 60{}^\circ $

$ \therefore $ Side $ a=\frac{2}{\sqrt{3}} $

$ \therefore $ Area $ =6\times \frac{\sqrt{3}}{4}{{( \frac{2}{\sqrt{3}} )}^{2}}=2\sqrt{3} $ Finally if A and B are opposite vertices then side $ a=\frac{1}{2}AB=1 $ Then area $ =6\times \frac{\sqrt{3}}{4}{{(1)}^{2}}=\frac{3\sqrt{3}}{2} $