Straight Line Question 220

Question: A regular polygon with equal sides has 9 diagonals. Two of the vertices are at $ A(-1,0) $ and $ B(1,0) $ . Possible areas of polygon is

Options:

A) $ \frac{3\sqrt{3}}{2},2\sqrt{3},6\sqrt{3} $

B) $ 2\sqrt{3},3\sqrt{3},6\sqrt{3} $

C) $ 9\sqrt{3},6\sqrt{3},2\sqrt{3} $

D) $ \frac{3\sqrt{3}}{2},3\sqrt{3},6\sqrt{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] If polygon has n sides, then the number of diagonals $ =\frac{n(n-3)}{2}=9 $

$ \therefore n=6 $ Now A and B can be adjacent vertices atternate vertices or opposite vertices If A and B are adjacent then side $ AB=2, $ then $ area=6\times \Delta OAB $ i.e. area $ =6\times \frac{\sqrt{3}}{4}\times {{(2)}^{2}}=6\sqrt{3} $ If A and B are alternate, then $ 2\cos 30{}^\circ =a+a\cos 60{}^\circ $

$ \therefore $ Side $ a=\frac{2}{\sqrt{3}} $

$ \therefore $ Area $ =6\times \frac{\sqrt{3}}{4}{{( \frac{2}{\sqrt{3}} )}^{2}}=2\sqrt{3} $ Finally if A and B are opposite vertices then side $ a=\frac{1}{2}AB=1 $ Then area $ =6\times \frac{\sqrt{3}}{4}{{(1)}^{2}}=\frac{3\sqrt{3}}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें