Straight Line Question 221

Question: A line which makes an acute angle $ \theta $ with the positive direction of x-axis is drawn through the point P(3, 4) to meet the line $ x=6 $ at R and $ y=8 $ at S, then

Options:

A) $ PR=3\cos \theta $

B) $ PS=-4\cos ec\theta $

C) $ PR-PS=\frac{2(3sin\theta +4cos\theta )}{\sin 2\theta } $

D) $ \frac{9}{{{(PR)}^{2}}}+\frac{16}{{{(PS)}^{2}}}=1 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] The equation of the line in parametric form is $ \frac{x-3}{\cos \theta }=\frac{y-4}{\sin \theta }=r $ Any point on this line is $ (3+rcos\theta ,4+rsin\theta ) $ It lies on $ x=6 $ if $ 3+r\cos \theta =6\Rightarrow r=3\sec \theta $

$ \therefore PR=3sec\theta $ Again the point lies on $ y=8 $ if $ 4+r\sin \theta =8 $

$ \therefore r=4\cos ec\theta $ or $ PS=4\cos ec\theta $ other options can be chocked easily



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें