Straight Line Question 227

Question: Let $ (h,k) $ be a fixed point where $ h>0,k>0. $ A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the $ \Delta OPQ.O $ O being the origin, is

Options:

A) 4hk sq. units

B) 2hk sq. units

C) 3hk sq. units

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let the equation of any line passing through $ A(h,k) $ be $ y-k=m(x-h). $ Let this line cut the x-axis and y-axis at P and Q. Then $ P\equiv ( h-\frac{k}{m},0 ) $ and $ Q\equiv (0,k-mh). $ Let S be the area of $ \Delta OPQ, $ then $ S=\frac{1}{2}OP\times OQ=\frac{1}{2}( h-\frac{k}{m} )(k-mh) $

$ =\frac{1}{2}\frac{(mh-k)(k-mh)}{m} $

$ \Rightarrow 2mS=hkm-k^{2}-h^{2}m^{2}+khm $

$ \Rightarrow h^{2}m^{2}-2(hk-S)m+k^{2}=0 $ Since, m is real
$ \therefore $ its discriminant $ D\ge 0 $

$ \therefore 4{{(hk-S)}^{2}}-4h^{2}k^{2}\ge 0 $

$ \Rightarrow S-2hk\ge 0\Rightarrow S\ge 2hk $ Hence, minimum value of S is 2hk sq. units.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें