Straight Line Question 230

Question: Let $ A( \alpha ,\frac{1}{\alpha } ),B( \alpha ,\frac{1}{\beta } ),C( \gamma ,\frac{1}{\gamma } ) $ be the vertices of a $ \Delta ABC, $ where $ \alpha ,\beta $ are the roots of the equation $ x^{2}-6p_1x+2=0,\beta ,\gamma $ $ x^{2}-6p_1x+2=0,\beta ,\gamma $ are the roots of the equation $ x^{2}-6p_2x+3=0 $ and $ \gamma ,\alpha $ are the roots of the equation $ x^{2}-6p_3x+6=0,p_1,p_2,p_3 $ being positive. Then, the coordinates of the centroid of $ \Delta ABC $ is

Options:

A) $ ( 1,\frac{11}{18} ) $

B) $ ( 0,\frac{11}{8} ) $

C) $ ( 2,\frac{11}{18} ) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] it is given that $ \alpha ,\beta $ are the roots of the equation $ x^{2}-6p_1x+2=0. $

$ \therefore \alpha +\beta =6p_1,\alpha \beta =2 $? (i) $ \beta ,\gamma $ are the roots of the equation $ x^{2}-6p_2x+3=0. $

$ \therefore \beta +\gamma =6p_2,\beta \gamma =3 $ ?. (ii) $ \gamma ,\alpha $ are the roots of the equation $ x^{2}-6p_3x+6=0. $

$ \therefore \gamma +\alpha =6p_3,\gamma \alpha =6 $ ?. (iii) From Eqs. (i), (ii) and (iii), we get

$ \Rightarrow \alpha \beta \gamma =6 $ $ [\therefore \alpha ,\beta ,\gamma >0] $ Now, $ \alpha \beta =2 $ and $ \alpha \beta \gamma =6 $

$ \Rightarrow \gamma =3 $

$ \beta \gamma =3 $ and $ \alpha \beta \gamma =6 $

$ \alpha =3 $ $ \alpha =6\alpha \beta \gamma =6 $

$ \Rightarrow \beta =1 $

$ \therefore \alpha +\beta =6p_1\Rightarrow 3=6p_1 $

$ \Rightarrow p_1=\frac{1}{2} $

$ \beta +\gamma =6p_2\Rightarrow 4=6p_2 $

$ \Rightarrow p_2=\frac{2}{3} $ and $ \gamma +\alpha =6p_3\Rightarrow 5=6p_3 $

$ \Rightarrow p_3=\frac{5}{6} $ The coordinates of the centroid of triangle are $ ( \frac{\alpha +\beta +\gamma }{3},\frac{1}{3}( \frac{1}{\alpha }+\frac{1}{\beta }+\frac{1}{\gamma } ) ) $ or $ ( \frac{6}{3},\frac{1}{3}( \frac{1}{2}+1+\frac{1}{3} ) )or( 2,\frac{11}{18} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें