Straight Line Question 233

Question: The line $ x+y=a $ meets the axes of x and y at A and B respectively. A $ \Delta AMN $ is inscribed in the $ \Delta OAB,O $ being the origin, with right angle at N. M and N lie respectively on OB and AB. If the area of the $ \Delta AMN $ is $ \frac{3}{8} $ of the area of the $ \Delta OAB, $ then $ \frac{AN}{BN} $ is equal to

Options:

A) $ \frac{1}{3} $

B) $ \frac{1}{3},3 $

C) $ \frac{2}{3},3 $

D) 3

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let $ \frac{AN}{BN}=\lambda . $ Then, the coordinates of N are $ ( \frac{a}{1+\lambda },\frac{\lambda a}{1+\lambda } ). $ Where (a, 0) and (0, a) are the coordinates of A and B respectively. Now, equation of MN perpendicular to AB is $ y-\frac{\lambda a}{1+\lambda }=x-\frac{a}{1+\lambda } $

$ \Rightarrow x-y=\frac{1-\lambda }{1+\lambda }a $ So the coordinates of M are $ ( 0,\frac{\lambda -1}{\lambda +1}a ). $ Therefore, area of the $ \Delta AMN $ is $ =\frac{1}{2}| [ a( \frac{-a}{\lambda +1} )+\frac{1-\lambda }{{{(1+\lambda )}^{2}}}a^{2} ] | $

$ =\frac{\lambda a^{2}}{{{(1+\lambda )}^{2}}} $ Also, area of $ \Delta OAB=\frac{a^{2}}{2} $ So, that according to the given condition $ \frac{\lambda a^{2}}{{{(1+\lambda )}^{2}}}=\frac{3}{8}.\frac{1}{2}a^{2} $

$ \Rightarrow 3{{\lambda }^{2}}-10\lambda +3=0 $

$ \Rightarrow \lambda =3or\lambda =\frac{1}{3} $ For $ \lambda =\frac{1}{3},M $ lies outside the segment OB and Hence the required value of $ \lambda $ is 3.