Straight Line Question 233

Question: The line $ x+y=a $ meets the axes of x and y at A and B respectively. A $ \Delta AMN $ is inscribed in the $ \Delta OAB,O $ being the origin, with right angle at N. M and N lie respectively on OB and AB. If the area of the $ \Delta AMN $ is $ \frac{3}{8} $ of the area of the $ \Delta OAB, $ then $ \frac{AN}{BN} $ is equal to

Options:

A) $ \frac{1}{3} $

B) $ \frac{1}{3},3 $

C) $ \frac{2}{3},3 $

D) 3

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let $ \frac{AN}{BN}=\lambda . $ Then, the coordinates of N are $ ( \frac{a}{1+\lambda },\frac{\lambda a}{1+\lambda } ). $ Where (a, 0) and (0, a) are the coordinates of A and B respectively. Now, equation of MN perpendicular to AB is $ y-\frac{\lambda a}{1+\lambda }=x-\frac{a}{1+\lambda } $

$ \Rightarrow x-y=\frac{1-\lambda }{1+\lambda }a $ So the coordinates of M are $ ( 0,\frac{\lambda -1}{\lambda +1}a ). $ Therefore, area of the $ \Delta AMN $ is $ =\frac{1}{2}| [ a( \frac{-a}{\lambda +1} )+\frac{1-\lambda }{{{(1+\lambda )}^{2}}}a^{2} ] | $

$ =\frac{\lambda a^{2}}{{{(1+\lambda )}^{2}}} $ Also, area of $ \Delta OAB=\frac{a^{2}}{2} $ So, that according to the given condition $ \frac{\lambda a^{2}}{{{(1+\lambda )}^{2}}}=\frac{3}{8}.\frac{1}{2}a^{2} $

$ \Rightarrow 3{{\lambda }^{2}}-10\lambda +3=0 $

$ \Rightarrow \lambda =3or\lambda =\frac{1}{3} $ For $ \lambda =\frac{1}{3},M $ lies outside the segment OB and Hence the required value of $ \lambda $ is 3.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें