Straight Line Question 235

Question: Given a family of lines a $ a(2x+y+4)+b(x-2y-3)=0 $ the number of lines belonging to the family at a distance $ \sqrt{10} $ from $ P(2,-3) $ is

Options:

A) 0

B) 1

C) 2

D) 4

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] The length of perpendicular from $ P(2,-3) $ on the given family of lines $ =\frac{a(4-3+4)+b(2+6-3)}{\sqrt{{{(2a+b)}^{2}}+{{(a-2b)}^{2}}}}=\pm \sqrt{10} $ (Given)
    $ \Rightarrow 5a+5b=\pm \sqrt{10(5a^{2}+5b^{2})} $

$ \Rightarrow 25{{(a+b)}^{2}}=50(a^{2}+b^{2}) $

$ \Rightarrow 25{{(a-b)}^{2}}=0\Rightarrow a=b $ For which we get only line $ 3x-y+1=0 $