Straight Line Question 236

Question: If the line segment joining the points $ A(a,b) $ and $ B(c,d) $ subtends an angle $ \theta $ at the origin, then $ \cos \theta = $

Options:

A) $ \frac{ac+bd}{\sqrt{(a^{2}+b^{2})(c^{2}+d^{2})}} $

B) $ \frac{ab+cd}{\sqrt{(a^{2}+b^{2})(c^{2}+d^{2})}} $

C) $ \frac{ad+bc}{\sqrt{(a^{2}+b^{2})(c^{2}+d^{2})}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Let the origin be O. so $ O=(0,0) $ Now $ AB^{2}={{(a-c)}^{2}}+{{(b-d)}^{2}}, $ $ OA^{2}={{(a-0)}^{2}}+{{(b-0)}^{2}}=a^{2}+b^{2} $ and $ OB^{2}={{(c-0)}^{2}}+{{(d-0)}^{2}}=c^{2}+d^{2} $ Now from the $ \Delta AOB: $ $ \cos \theta =\frac{OA^{2}+OB^{2}-AB^{2}}{2OA.OB} $ $ =\frac{a^{2}+b^{2}+c^{2}+d^{2}-{{{(a-c)}^{2}}+{{(b-d)}^{2}}}}{2\sqrt{a^{2}+b^{2}}\sqrt{c^{2}+d^{2}}} $ $ =\frac{2(ac+bd)}{2\sqrt{(a^{2}+b^{2})(c^{2}+d^{2})}}=\frac{ac+bd}{\sqrt{(a^{2}+b^{2})(c^{2}+d^{2})}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें