Straight Line Question 240

Question: Vertices of a variable triangle are $ (3,4), $ $ (5cos\theta ,5sin\theta ) $ and $ (5sin\theta ,-5cos\theta ), $ where $ \theta \in R. $ Locus of its orthocenter is

Options:

A) $ {{(x+y-1)}^{2}}+{{(x-y-7)}^{2}}=100 $

B) $ {{(x+y-7)}^{2}}+{{(x-y-1)}^{2}}=100 $

C) $ {{(x+y-7)}^{2}}+{{(x+y-1)}^{2}}=100 $

D) $ {{(x+y-7)}^{2}}+{{(x-y+1)}^{2}}=100 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Distance of all the points from (0, 0) are 5 unit. That means circumventer of the triangle formed by the given point is (0, 0). If G(h, k) be the centroid of triangle, then $ 3h=3+5(cos\theta +sin\theta ),3k=4+5(sin\theta -cos\theta ) $ If $ H(\alpha ,\beta ) $ be the orthocenter, then OG: GH $ =1:2\Rightarrow \alpha =3h,\beta =3k $ $ \cos \theta +sin\theta =\frac{\alpha -3}{5},\sin \theta -\cos \theta =\frac{\beta -4}{5} $

$ \Rightarrow \sin \theta =\frac{\alpha +\beta -7}{10},\cos \theta =\frac{\alpha -\beta +1}{10} $ Thus, locus of $ (\alpha ,\beta ) $ is $ {{(x+y-7)}^{2}}+{{(x-y+1)}^{2}}=100. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें