Straight Line Question 244

Question: If the straight lines $ ax+may+1=0, $ $ bx+(m+1)by+1=0 $ and $ cx+(m+2)cy+1=0 $ are concurrent, then a, b, c form $ (m\ne 0) $

Options:

A) An A.P. only for m=1

B) An A.P. for all m

C) A G.P. for all m

D) A H.P. for all m

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] For the concurrency of three lines, $ a[(m+1)b-(m+2)c]-ma(b-c)+(m+2)bc-(m+1)bc=0 $

$ \Rightarrow \frac{1}{c}-\frac{1}{b}-\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{a}-\frac{2}{b}=0 $

$ \therefore \frac{1}{a},\frac{1}{b},\frac{1}{c} $ are in A.P., for all m.
$ \therefore $ a, b, c are in H.P., for all m.