Straight Line Question 244

Question: If the straight lines $ ax+may+1=0, $ $ bx+(m+1)by+1=0 $ and $ cx+(m+2)cy+1=0 $ are concurrent, then a, b, c form $ (m\ne 0) $

Options:

A) An A.P. only for m=1

B) An A.P. for all m

C) A G.P. for all m

D) A H.P. for all m

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] For the concurrency of three lines, $ a[(m+1)b-(m+2)c]-ma(b-c)+(m+2)bc-(m+1)bc=0 $

$ \Rightarrow \frac{1}{c}-\frac{1}{b}-\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{a}-\frac{2}{b}=0 $

$ \therefore \frac{1}{a},\frac{1}{b},\frac{1}{c} $ are in A.P., for all m.
$ \therefore $ a, b, c are in H.P., for all m.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें