Straight Line Question 247

Question: Through the point $ P(\alpha ,\beta ) $ , where $ \alpha \beta >0. $ the straight line $ \frac{x}{a}+\frac{y}{b}=1 $ is drawn so as the form with axes a triangle of area S. if $ ab>0, $ then least value of S is

Options:

A) $ \alpha \beta $

B) $ 2\alpha \beta $

C) $ 3\alpha \beta $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Area of $ \Delta OAB=S=\frac{1}{2}ab $ Equation of AB is $ \frac{x}{a}+\frac{y}{b}=1 $ Putting $ (\alpha ,\beta ), $ we get $ \frac{\alpha }{a}+\frac{\beta }{b}=1 $

$ \Rightarrow \frac{\alpha }{a}+\frac{\alpha \beta }{2S}=1 $ [using (i)]
$ \Rightarrow a^{2}\beta -2aS+2aS=0 $

$ \therefore a\in R\Rightarrow D\ge 0 $ $ 4S^{2}-8\alpha \beta S\ge 0 $

$ \Rightarrow S\ge 2\alpha \beta . $ Least value of $ S=2\alpha \beta . $