Straight Line Question 247

Through the point $ P(\alpha ,\beta ) $ , where $ \alpha \beta >0. $ the straight line $ \frac{x}{a}+\frac{y}{b}=1 $ is drawn so as to form with the axes a triangle of area S. If $ ab>0, $ then least value of S is

Options:

A) $ \alpha \beta $

B) $ 2\alpha \beta $

C) $ 3\alpha \beta $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Area of $ \Delta OAB=S=\frac{1}{2}ab $ Equation of AB is $ \frac{x}{a}+\frac{y}{b}=1 $ Putting $ (\alpha ,\beta ), $ we get $ \frac{\alpha }{a}+\frac{\beta }{b}=1 $

$ \Rightarrow \frac{\alpha }{a}+\frac{\alpha \beta }{2S}=1 $ [using (i)]
$ \Rightarrow a^{2}\beta -2aS+2aS=0 $

$ \therefore a\in \mathbb{R}\Rightarrow D\ge 0 $ $ 4S^{2}-8\alpha \beta S\ge 0 $

$ \Rightarrow S\ge 2\alpha \beta . $ Least value of $ S=2\alpha \beta . $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें