Straight Line Question 25

Question: A straight line through origin bisect the line passing through the given points $ (a\cos \alpha ,a\sin \alpha ) $ and $ (a\cos \beta ,a\sin \beta ) $ , then the lines are

Options:

A) Perpendicular

B) Parallel

C) Angle between them is $ \frac{\pi }{4} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • Mid point of $ (a\cos \alpha ,a\sin \alpha ) $ and $ (a\cos \beta ,a\sin \beta ) $ is $ P( \frac{a(\cos \alpha +\cos \beta )}{2},\frac{a(\sin \alpha +\sin \beta )}{2} ) $ Slope of line $ AB $ is $ \frac{a\sin \beta -a\sin \alpha }{a\cos \beta -a\cos \alpha } $ $ =\frac{\sin \beta -\sin \alpha }{\cos \beta -\cos \alpha }=m_1 $ and slope of $ OP $ is $ \frac{\sin \alpha +\sin \beta }{\cos \alpha +\cos \beta }=m_2 $ Now $ m_1\times m_2=\frac{{{\sin }^{2}}\beta -{{\sin }^{2}}\alpha }{{{\cos }^{2}}\beta -{{\cos }^{2}}\alpha }=-1 $ Hence the lines are perpendicular.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें