Straight Line Question 254

Question: The equation of straight line passing through (-a, 0) and making a triangle with the axes of area T is

Options:

A) $ 2Tx+a^{2}y+2aT=0 $

B) $ 2Tx-a^{2}y+2aT=0 $

C) $ 2Tx-a^{2}y-2aT=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] If the line cuts off the axes at A and B, then the area of triangle is $ \frac{1}{2}\times OA\times OB=T $ Or $ \frac{1}{2}\times a\times OB=T $ or $ OB=\frac{2T}{a} $ Hence, the equation of line is $ \frac{x}{-a}+\frac{y}{2T/a}=1 $ or $ 2Tx-a^{2}y+2aT=0. $