Straight Line Question 258

Question: A variable line ?L? is drawn through $ O(0,0) $ to meet the lines $ L_1:y-x-10=0 $ and $ L_2:y-x-20=0 $ at the points A and B respectively. A point P is taken on ?L? such that $ \frac{2}{OP}=\frac{1}{OA}+\frac{1}{OB}. $ Locus of ?P? is

Options:

A) $ 3x+3y=40 $

B) $ 3x+3y+40=0 $

C) $ 3x-3y=40 $

D) $ 3y-3x=40 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let the parametric equation of drawn line $ \frac{x}{\cos \theta }=\frac{y}{\sin \theta }=r\Rightarrow x=r\cos \theta ,y=r\sin \theta $ Putting it in $ ‘L_1’ $ , we get $ r\sin \theta =rcos\theta +10 $

$ \Rightarrow \frac{1}{OA}=\frac{\sin \theta -\cos \theta }{10} $ Similarly, putting the general point of drawn line is the equation of $ L_2, $ we get $ \frac{1}{OB}=\frac{\sin \theta -\cos \theta }{20} $ Let $ P=(h,k) $ and $ OP=r $

$ \Rightarrow r\cos \theta =h,r\sin \theta =k, $ we have $ \frac{2}{r}=\frac{\sin \theta -\cos \theta }{10}+\frac{\sin \theta -\cos \theta }{20} $

$ \Rightarrow 40=3r\sin \theta -3r\cos \theta \Rightarrow 3y-3x=40. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें