Straight Line Question 258

Question: A variable line ?L? is drawn through $ O(0,0) $ to meet the lines $ L_1:y-x-10=0 $ and $ L_2:y-x-20=0 $ at the points A and B respectively. A point P is taken on ?L? such that $ \frac{2}{OP}=\frac{1}{OA}+\frac{1}{OB}. $ Locus of ?P? is

Options:

A) $ 3x+3y=40 $

B) $ 3x+3y+40=0 $

C) $ 3x-3y=40 $

D) $ 3y-3x=40 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let the parametric equation of drawn line $ \frac{x}{\cos \theta }=\frac{y}{\sin \theta }=r\Rightarrow x=r\cos \theta ,y=r\sin \theta $ Putting it in $ ‘L_1’ $ , we get $ r\sin \theta =rcos\theta +10 $

$ \Rightarrow \frac{1}{OA}=\frac{\sin \theta -\cos \theta }{10} $ Similarly, putting the general point of drawn line is the equation of $ L_2, $ we get $ \frac{1}{OB}=\frac{\sin \theta -\cos \theta }{20} $ Let $ P=(h,k) $ and $ OP=r $

$ \Rightarrow r\cos \theta =h,r\sin \theta =k, $ we have $ \frac{2}{r}=\frac{\sin \theta -\cos \theta }{10}+\frac{\sin \theta -\cos \theta }{20} $

$ \Rightarrow 40=3r\sin \theta -3r\cos \theta \Rightarrow 3y-3x=40. $