Straight Line Question 259

Question: The middle point of the segment of the straight line joining the points (p, q) and (q, -p) is $ (r/2),s/2 $ what is the length of the segment?

Options:

A) $ [{{(s^{2}+r^{2})}^{1/2}}]/2 $

B) $ [{{(s^{2}+r^{2})}^{1/2}}]/4 $

C) $ {{(s^{2}+r^{2})}^{1/2}} $

D) $ s+r $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Two joining points are (p, q) and (q, -p) Midpoint of (p, q) and (q, -p) is $ ( \frac{p+q}{2},\frac{q-p}{2} ) $ But it is given that the mid-point is $ ( \frac{r}{2},\frac{s}{2} ) $

$ \therefore \frac{p+q}{2}=\frac{r}{2} $ and $ \frac{q-p}{2}=\frac{s}{2} $

$ \Rightarrow p+q=r $ and $ q-p=s $ Now, length of segment $ =\sqrt{{{(p-q)}^{2}}+{{(q+p)}^{2}}} $ (By distance formula) $ =\sqrt{s^{2}+r^{2}} $