Straight Line Question 260

Question: If the sum of the squares of the distances of the point (x, y) from the pints (a, 0) and (-a, 0) is $ 2b^{2}, $ then which one of the following is correct?

Options:

A) $ x^{2}+a^{2}=b^{2}+y^{2} $

B) $ x^{2}+a^{2}=2b^{2}-y^{2} $

C) $ x^{2}-a^{2}=b^{2}+y^{2} $

D) $ x^{2}+a^{2}=b^{2}-y^{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let P(x, y) be a point and $ A=(\alpha ,0),B=(-\alpha ,0). $ Now, $ PA^{2}={{(x-a)}^{2}}+y^{2} $ $ PB^{2}={{(x+a)}^{2}}+y^{2} $ Since the sum of the distances of the point $ P(x,y) $ from the points $ A(a,0) $ and $ B(-a,0) $ is $ 2b^{2}. $

$ \therefore PA^{2}+PB^{2}=2b^{2} $ $ {{(x-a)}^{2}}+{{(y-0)}^{2}}+{{(x+a)}^{2}}+{{(y-0)}^{2}}=2b^{2} $

$ \Rightarrow x^{2}+a^{2}-2ax+y^{2}+x^{2}+a^{2}+2ax+y^{2}=2b^{2} $

$ \Rightarrow x^{2}+a^{2}+y^{2}=b^{2} $

$ \Rightarrow x^{2}+a^{2}=b^{2}-y^{2} $