Straight Line Question 261

Question: A rectangle ABCD, where A(0, 0), B(4, 0), C(4, 2), D(0, 2), undergoes the following transformations successively:

i. $ f_1(x,y)\to (y,x) $ ii. $ f_2(x,y)\to (x+3y,y) $ iii. $ f_3(x,y)\to ((x-y)/2,(x+y)/2) $ The final figure will be

Options:

A) A square

B) A rhombus

C) A rectangle

D) A parallelogram

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Clearly, A will remain as (0,0); $ f_1 $ will make B as $ (0,4),f_2 $ will make it $ (12,4) $ and $ f_3 $ will make it $ (4,8);f_1 $ will make C as $ (2,4)f_2 $ will make it $ (14,4) $ and $ f_3 $ will make it (5, 9) finally, $ f_1 $ will make D as $ (2,0)f_2 $ will make it (2, 0) and $ f_3 $ will make it (1, 1). So, we finally get A(0, 0), B(4, 8), C(5, 9), and $ D(1,1). $ Hence, $ m _{AB}=\frac{8}{4},m _{BC}=\frac{9-8}{5-4}=1,m _{CD}=\frac{9-1}{5-1}=\frac{8}{4}, $ $ m _{AD}=1,m _{AC}=\frac{9}{5},m _{BD}=\frac{8-1}{4-1}=\frac{7}{3} $ Hence, the final figure will be a parallelogram.