Straight Line Question 265

Question: Two points $ P(a,0) $ and $ Q(-a,0) $ are given, R is a variable point on one side of the line PQ such that $ \angle RPQ-\angle RQP $ is $ 2\alpha $ . Then, the locus of R is

Options:

A) $ x^{2}-y^{2}+2xy\cot 2\alpha -a^{2}=0 $

B) $ x^{2}+y^{2}+2xy\cot 2\alpha -a^{2}=0 $

C) $ x^{2}+y^{2}+2xy\cot 2\alpha +a^{2}=0 $

D) None of the above

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Let $ R(h,k) $ be the variable point. Then, $ \angle RPQ=\theta $ and $ \angle RQP=\phi , $ so that $ \theta -\phi =2\alpha $ Let $ RM\bot PQ, $ so that $ RM=k,MP=a-h $ and $ MQ=a+h $ Then, $ \tan \theta =\frac{RM}{MP}=\frac{k}{a-h} $ $ \tan \phi =\frac{RM}{MQ}=\frac{k}{a+h} $ Therefore, from $ 2\alpha =\theta -\phi , $ we have $ \tan 2\alpha =\tan (\theta -\phi )=\frac{\tan \theta -\tan \phi }{1+\tan \theta tan\phi } $ $ =\frac{k(a+h)-k(a-h)}{a^{2}-h^{2}+k^{2}} $

$ \Rightarrow a^{2}-h^{2}+k^{2}=2hk\cot 2\alpha =0 $ Therefore, the locus of $ R(h,k) $ is $ x^{2}-y^{2}+2xy\cot 2\alpha -a^{2}=0 $ Hence, [a] is the correct answer.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें