Straight Line Question 269

Question: If the points (h, 0), (a, b) and (o, k) lies on a line, then the value of $ \frac{a}{h}+\frac{b}{k} $ is

Options:

A) 0

B) 1

C) 2

D) 3

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] The given points are $ A(h,0),B(a,b),C(0,k) $ , they lie on the same plane.
    $ \therefore SlopeofAB=SlopeofBC $

$ \therefore $ Slope of $ AB=\frac{b-0}{a-h}=\frac{b}{a-h}; $ Slope of $ BC=\frac{k-b}{0-a}=\frac{k-b}{-a} $

$ \therefore \frac{b}{a-h}=\frac{k-b}{-a} $ or by cross multiplication $ -ab=(a-h)(k-b) $ or $ -ab=ak-ab-hk+hb $ or $ 0=ak-hk+hb $ or $ ak+hb=hk $ Dividing by $ hk\Rightarrow \frac{ak}{hk}+\frac{hb}{hk}=1 $ or $ \frac{a}{h}+\frac{b}{k}=1 $