Straight Line Question 269
Question: If the points (h, 0), (a, b) and (o, k) lies on a line, then the value of $ \frac{a}{h}+\frac{b}{k} $ is
Options:
A) 0
B) 1
C) 2
D) 3
 Correct Answer: B $ \therefore  $  Slope of  $ AB=\frac{b-0}{a-h}=\frac{b}{a-h}; $  Slope of  $ BC=\frac{k-b}{0-a}=\frac{k-b}{-a} $ $ \therefore \frac{b}{a-h}=\frac{k-b}{-a} $  or by cross multiplication  $ -ab=(a-h)(k-b) $  or  $ -ab=ak-ab-hk+hb $  or  $ 0=ak-hk+hb $  or  $ ak+hb=hk $  Dividing by  $ hk\Rightarrow \frac{ak}{hk}+\frac{hb}{hk}=1 $  or  $ \frac{a}{h}+\frac{b}{k}=1 $Show Answer
  Answer:
Solution:
$ \therefore SlopeofAB=SlopeofBC $
 BETA
  BETA 
             
             
           
           
           
          