Straight Line Question 269
Question: If the points (h, 0), (a, b) and (o, k) lies on a line, then the value of $ \frac{a}{h}+\frac{b}{k} $ is
Options:
A) 0
B) 1
C) 2
D) 3
Correct Answer: B $ \therefore $ Slope of $ AB=\frac{b-0}{a-h}=\frac{b}{a-h}; $ Slope of $ BC=\frac{k-b}{0-a}=\frac{k-b}{-a} $ $ \therefore \frac{b}{a-h}=\frac{k-b}{-a} $ or by cross multiplication $ -ab=(a-h)(k-b) $ or $ -ab=ak-ab-hk+hb $ or $ 0=ak-hk+hb $ or $ ak+hb=hk $ Dividing by $ hk\Rightarrow \frac{ak}{hk}+\frac{hb}{hk}=1 $ or $ \frac{a}{h}+\frac{b}{k}=1 $Show Answer
Answer:
Solution:
$ \therefore SlopeofAB=SlopeofBC $