Straight Line Question 273

Question: Let $ P=(-1,0),Q=(0,0) $ and $ R=(3,3\sqrt{3}) $ be three point. The equation of the bisector of the angle PQR is

Options:

A) $ \frac{\sqrt{3}}{2}x+y=0 $

B) $ x+\sqrt{3y}=0 $

C) $ \sqrt{3}x+y=0 $

D) $ x+\frac{\sqrt{3}}{2}y=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] The coordinates of points P, Q, R are $ (-1,0) $ , $ (0,0) $ , $ (3,3\sqrt{3}) $ , respectively. Slope of QR $ =\frac{y_2-y_1}{x_2-x_1}=\frac{3\sqrt{3}}{3} $

$ \Rightarrow \tan \theta =\sqrt{3} $

$ \Rightarrow \theta =\frac{\pi }{3}\Rightarrow \angle RQX=\frac{\pi }{3} $

$ \therefore \angle RQP=\pi -\frac{\pi }{3}=\frac{2\pi }{3}; $ Let QM bisects the $ \angle PQR, $

$ \therefore $ Slope of the line $ QM=\tan \frac{2\pi }{3}=-\sqrt{3} $

$ \therefore $ Equation of line OM is $ (y-0)=-\sqrt{3}(x-0) $

$ \Rightarrow y=-\sqrt{3}x\Rightarrow \sqrt{3}x+y=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें