Straight Line Question 30

Question: The equation of the bisector of the acute angle between the lines $ 3x-4y+7=0 $ and $ 12x+5y-2=0 $ is [IIT 1975, 1983; RPET 2003; UPSEAT 2004]

Options:

A) $ 21x+77y-101=0 $

B) $ 11x-3y+9=0 $

C) $ 31x+77y+101=0 $

D) $ 11x-3y-9=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Bisectors of angles is given by $ \frac{3x-4y+7}{5}=\pm \frac{12x+5y-2}{13} $
    Þ $ 11x-3y+9=0 $ ……(i) and $ 21x+77y-101=0 $ ……(ii) Let the angle between the line $ 3x-4y+7=0 $ and (i) is $ \alpha , $ then $ \tan \alpha =| \frac{m_1-m_2}{1+m_1m_2} |=| \frac{\frac{3}{4}-\frac{11}{3}}{1+\frac{3}{4}\times \frac{11}{3}} |=\frac{35}{45}<1 $

$ \Rightarrow \alpha <45^{o} $ Hence $ 11x-3y+9=0 $ is the bisector of the acute angle between the given lines.