Straight Line Question 30

Question: The equation of the bisector of the acute angle between the lines $ 3x-4y+7=0 $ and $ 12x+5y-2=0 $ is [IIT 1975, 1983; RPET 2003; UPSEAT 2004]

Options:

A) $ 21x+77y-101=0 $

B) $ 11x-3y+9=0 $

C) $ 31x+77y+101=0 $

D) $ 11x-3y-9=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Bisectors of angles is given by $ \frac{3x-4y+7}{5}=\pm \frac{12x+5y-2}{13} $
    Þ $ 11x-3y+9=0 $ ……(i) and $ 21x+77y-101=0 $ ……(ii) Let the angle between the line $ 3x-4y+7=0 $ and (i) is $ \alpha , $ then $ \tan \alpha =| \frac{m_1-m_2}{1+m_1m_2} |=| \frac{\frac{3}{4}-\frac{11}{3}}{1+\frac{3}{4}\times \frac{11}{3}} |=\frac{35}{45}<1 $

$ \Rightarrow \alpha <45^{o} $ Hence $ 11x-3y+9=0 $ is the bisector of the acute angle between the given lines.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें