Straight Line Question 351
Question: If we reduce $ 3x+3y+7=0 $ to the form $ x\cos \alpha +y\sin \alpha =p, $ then the value of p is[MP PET 2001]
Options:
A) $ \frac{7}{2\sqrt{3}} $
B) $ \frac{7}{3} $
C) $ \frac{3\sqrt{7}}{2} $
D) $ \frac{7}{3\sqrt{2}} $
Correct Answer: DShow Answer
Answer:
Solution:
Þ $ \frac{3}{\sqrt{3^{2}+3^{2}}}x+\frac{3}{\sqrt{3^{2}+3^{2}}}y+7=0 $
Þ $ \frac{3}{3\sqrt{2}}x+\frac{3}{3\sqrt{2}}y=\frac{-7}{3\sqrt{2}} $ , \ $ p=| \frac{-7}{3\sqrt{2}} |=\frac{7}{3\sqrt{2}} $ .