Straight Line Question 364

Question: The opposite angular points of a square are $ (3,\ 4) $ and $ (1,\ -\ 1) $ . Then the co-ordinates of other two points are [Roorkee 1985]

Options:

A) $ D( \frac{1}{2},\frac{9}{2} ),B( -\frac{1}{2},\frac{5}{2} ) $

B) $ D( \frac{1}{2},\frac{9}{2} ),B( \frac{1}{2},\frac{5}{2} ) $

C) $ D( \frac{9}{2},\frac{1}{2} ),B( -\frac{1}{2},\frac{5}{2} ) $

D)None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • Obviously, slope of $ AC=5/2 $ . Let m be the slope of a line inclined at an angle of $ 45^{o} $ to AC, then $ \tan 45^{o}=\pm \frac{m-\frac{5}{2}}{1+m.\frac{5}{2}}\Rightarrow m=-\frac{7}{3},\frac{3}{7} $ .Thus, let the slope of AB or DC be 3/7and that of AD or BC be $ -\frac{7}{3} $ . Then equation of AB is $ 3x-7y+19=0 $ . Also the equation of BC is $ 7x+3y-4=0 $ . On solving these equations, we get, $ B( -\frac{1}{2},\frac{5}{2} ) $ . Now let the coordinates of the vertex D be (h, k). Since the middle points of AC and BD are same, therefore $ \frac{1}{2}( h-\frac{1}{2} )=\frac{1}{2}(3+1)\Rightarrow h=\frac{9}{2} $ , $ \frac{1}{2}( k+\frac{5}{2} )=\frac{1}{2}(4-1) $
    Þ $ k=\frac{1}{2} $ . Hence, $ D=( \frac{9}{2},\frac{1}{2} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें