Straight Line Question 366

Question: One diagonal of a square is along the line $ 8x-15y=0 $ and one of its vertex is (1, 2). Then the equation of the sides of the square passing through this vertex, are [IIT 1962]

Options:

A) $ 23x+7y=9,\ 7x+23y=53 $

B) $ 23x-7y+9=0,\ 7x+23y+53=0 $

C) $ 23x-7y-9=0,\ 7x+23y-53=0 $

D)None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • Slope of $ BD $ is $ \frac{8}{15} $ and angle made by $ BD $ with AD and DC is $ 45^{o} $ . So let slope of DC be m, then $ \tan 45^{o}=\pm \frac{m-\frac{8}{15}}{1+\frac{8}{15}m} $

$ \Rightarrow (15+8m)=\pm (15m-8) $
Þ $ m=\frac{23}{7} $ and $ -\frac{7}{23} $ Hence the equations of DC and AD are $ y-2=\frac{23}{7}(x-1) $

$ \Rightarrow 23x-7y-9=0 $ and $ y-2=-\frac{7}{23}(x-1) $

$ \Rightarrow 7x+23y-53=0 $ .