Question: The equation of the line which makes right angled triangle with axes whose area is 6 sq. units and whose hypotenuse is of 5 units, is
Options:
A) $ \frac{x}{4}+\frac{y}{3}=\pm \ 1 $
B) $ \frac{x}{4}-\frac{y}{3}=\pm \ 3 $
C) $ \frac{x}{6}+\frac{y}{1}=\pm \ 1 $
D) $ \frac{x}{1}-\frac{y}{6}=\pm \ 1 $
  Show Answer
  Answer:
Correct Answer: A
Solution:
- If the line is  $ \frac{x}{a}+\frac{y}{b}=1 $ , then the intercepts on the axes are  $ a $  and  $ b $ .     Therefore the area is  $ \frac{1}{2}|a\times b|=6\Rightarrow |ab|=12 $   ?..(i)     and hypotenuse is 5, therefore  $ a^{2}+b^{2}=25 $   ?..(ii)     On solving (i) and (ii), we get      $ a=\pm 4 $ or  $ \pm 3 $ and  $ b=\pm 3 $ or  $ \pm 4 $      Hence equation of line is  $ \pm \frac{x}{4}\pm \frac{y}{3}=1 $ or  $ \pm \frac{x}{3}\pm \frac{y}{4}=1 $ .Trick: Check with options. Obviously, the line  $ \frac{x}{4}+\frac{y}{3}=\pm 1 $  satisfies both the conditions.