Straight Line Question 380

Question: If a, b, c are in harmonic progression, then straight line $ \frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0 $ always passes through a fixed point, that point is [MP PET 1999; AIEEE 2005]

Options:

A) $ (-1,\ -2) $

B) $ (-1,\ 2) $

C) $ (1,\ -2) $

D) $ (1,\ -1/2) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • a, b, c are in H. P., then $ \frac{2}{b}=\frac{1}{a}+\frac{1}{c} $ …..(i) Given line is $ \frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0 $ …..(ii) Subtracting both $ \frac{1}{a}(x-1)+\frac{1}{b}(y+2)=0 $ Since $ a\ne 0,b\ne 0 $ So, $ (x-1)=0\Rightarrow x=1\text{ and }(y+2)=0\Rightarrow y=-2 $ .Trick: Checking from options, let $ a,b,c $ are $ \frac{1}{1},\frac{1}{2},\frac{1}{3} $ . Then $ x+2y+3=0 $ will satisfy (c) option.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें