Straight Line Question 392

Question: The line which is parallel to x?axis and crosses the curve $ y=\sqrt{x} $ at an angle of $ 45^{o} $ is equal to [Pb. CET 2002]

Options:

A) $ x=\frac{1}{4} $

B) $ y=\frac{1}{4} $

C) $ y=\frac{1}{2} $

D) $ y=1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let the equation of line parallel to x-axis be $ y=\lambda $…..(i) Solving (i) with the cuve $ y=\sqrt{x} $ …..(ii) We get $ P({{\lambda }^{2}},\lambda ) $ the point of intersection at P
    $ \therefore $ Slope of (ii) is, m= $ {{( \frac{dy}{dx} )} _{\text{at }P}}=\frac{1}{2\lambda } $

$ \therefore $ (i) and (ii) intersect at P, at $ 45{}^\circ $

$ \therefore $ $ {{\tan }^{-1}}( \frac{m-0}{1+m.0} )=\pm 45{}^\circ $ .
Þ $ m=( \frac{1}{2\lambda } )=\pm 1 $
Þ $ \lambda =\pm \frac{1}{2} $

$ \therefore $ The equation of line is $ y=\frac{1}{2} $ or $ y=\frac{-1}{2} $ but $ y=\frac{-1}{2} $ is not given, hence the required line is $ y=\frac{1}{2} $ .