Straight Line Question 392

Question: The line which is parallel to x?axis and crosses the curve $ y=\sqrt{x} $ at an angle of $ 45^{o} $ is equal to [Pb. CET 2002]

Options:

A) $ x=\frac{1}{4} $

B) $ y=\frac{1}{4} $

C) $ y=\frac{1}{2} $

D) $ y=1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let the equation of line parallel to x-axis be $ y=\lambda $…..(i) Solving (i) with the cuve $ y=\sqrt{x} $ …..(ii) We get $ P({{\lambda }^{2}},\lambda ) $ the point of intersection at P
    $ \therefore $ Slope of (ii) is, m= $ {{( \frac{dy}{dx} )} _{\text{at }P}}=\frac{1}{2\lambda } $

$ \therefore $ (i) and (ii) intersect at P, at $ 45{}^\circ $

$ \therefore $ $ {{\tan }^{-1}}( \frac{m-0}{1+m.0} )=\pm 45{}^\circ $ .
Þ $ m=( \frac{1}{2\lambda } )=\pm 1 $
Þ $ \lambda =\pm \frac{1}{2} $

$ \therefore $ The equation of line is $ y=\frac{1}{2} $ or $ y=\frac{-1}{2} $ but $ y=\frac{-1}{2} $ is not given, hence the required line is $ y=\frac{1}{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें