Straight Line Question 41

Question: The lines $ (p-q)x+(q-r)y+(r-p)=0 $ $ (q-r)x+(r-p)y+(p-q)=0 $ $ (r-p)x+(p-q)y+(q-r)=0 $ are

Options:

A)Parallel

B)Perpendicular

C)Concurrent

D)None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ | \begin{matrix} p-q & q-r & r-p \\ q-r & r-p & p-q \\ r-p & p-q & q-r \\ \end{matrix} |=| \begin{matrix} 0 & q-r & r-p \\ 0 & r-p & p-q \\ 0 & p-q & q-r \\ \end{matrix} |=0 $ Hence the lines are concurrent.Aliter: Since sum of the coefficient of x, y and the constant term is zero, hence the lines are concurrent.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें