Straight Line Question 47

Question: If the lines $ ax+y+1=0,x+by+1=0 $ and $ x+y+c=0 $ (a, b, c being distinct and different from 1) are concurrent, then $ \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}= $

Options:

A)0

B)1

C) $ \frac{1}{a+b+c} $

D)None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • If the given lines are concurrent, then $ | \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \\ \end{matrix} |=0\Rightarrow | \begin{matrix} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \\ \end{vmatrix} =0 $ {Apply $ C_2\to C_2-C_1 $ and $ C_3\to C_3-C_1 $ }
    Þ $ a(b-1)(c-1)-(b-1)(1-a)-(c-1)(1-a)=0 $
    Þ $ \frac{a}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=0 $ {Divide by $ (1-a)(1-b)(1-c) $ }
    Þ $ \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1 $ .