Straight Line Question 7

Question: The angle between the lines $ x\cos {\alpha_1}+y\sin {\alpha_1}=p_1 $ and $ x\cos {\alpha_2}+y\sin {\alpha_2}=p_2 $ is

Options:

A) $ ({\alpha_1}+{\alpha_2}) $

B) $ ({\alpha_1}\tilde{\ }{\alpha_2}) $

C) $ 2{\alpha_1} $

D) $ 2{\alpha_2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \theta ={{\tan }^{-1}}[ \frac{-\cot {\alpha_1}+\cot {\alpha_2}}{1+\cot {\alpha_1}\cot {\alpha_2}} ] $ $ ={{\tan }^{-1}}[ \frac{\tan {\alpha_2}-\tan {\alpha_1}}{1+\tan {\alpha_2}\tan {\alpha_1}} ]=({\alpha_2}\tilde{\ }{\alpha_1}) $ Aliter: Obviously, first line makes angle $ \frac{\pi }{2}+{\alpha_1} $ with the x-axis and second line makes the angle $ \frac{\pi }{2}+{\alpha_2} $ . Therefore, angle between these two lines is $ {\alpha_1}\tilde{\ }{\alpha_2} $ .