Straight Line Question 72

Question: If straight lines $ ax+by+p=0 $ and $ x\cos \alpha +y\sin \alpha -p=0 $ include an angle $ \pi /4 $ between them and meet the straight line $ x\sin \alpha -y\cos \alpha =0 $ in the same point, then the value of $ a^{2}+b^{2} $ is equal to

Options:

A)1

B)2

C)3

D)4

Show Answer

Answer:

Correct Answer: B

Solution:

  • It is given that the lines $ ax+by+p=0 $ and $ x\cos \alpha +y\sin \alpha =p $ are inclined at an angle $ \frac{\pi }{4} $ . Therefore $ \tan \frac{\pi }{4}=\frac{-\frac{a}{b}+\frac{\cos \alpha }{\sin \alpha }}{1+\frac{a\cos \alpha }{b\sin \alpha }} $
    Þ $ a\cos \alpha +b\sin \alpha =-a\sin \alpha +b\cos \alpha $ …..(i) It is given that the lines $ ax+by+p=0 $ , $ x\cos \alpha +y\sin \alpha -p=0 $ and $ x\sin \alpha -y\cos \alpha =0 $ are concurrent. \ $ | \begin{matrix} a & b & p \\ \cos \alpha & \sin \alpha & -p \\ \sin \alpha & -\cos \alpha & 0 \\ \end{matrix} |=0 $
    Þ $ -ap\cos \alpha -bp\sin \alpha -p=0\Rightarrow -a\cos \alpha -b\sin \alpha =1 $
    Þ $ a\cos \alpha +b\sin \alpha =-1 $ ……(ii)From (i) and (ii), $ -a\sin \alpha +b\cos \alpha =-1 $ From (ii) and (iii), $ {{(a\cos \alpha +b\sin \alpha )}^{2}}+{{(-a\sin \alpha +b\cos \alpha )}^{2}}=2 $
    Þ $ a^{2}+b^{2}=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें